COMBINATORICS AND GRAPH THEORY
BANATH CENTER PUBLICATIONS, VOLUME 25
PWN-POLISH SCIENTIFIC PUBLISHERS
WARSAW 1989

VERTEX-VECTORS OF QUADRANGULAR 3-POLYTOPES
WITH TWO TYPES OF EDGES

S. JENDROL', E. JUCOVIC and M. TRENKLER

P. J. Safarik University, Kosice, Czechoslovakia

1. Introduction

If the edge e of the 3-polytope M is incident with vertices A, B and faces a, f,
the type of e is defined as the ordered couple of unordered number couples
((a, b)(m, n)) where a, b are valencies of A, B and m, n are numbers of edges of a,
B. In the present paper we deal with 3-polytopes having quadrangular faces
only and exactly two types of edges, therefore the notation can be simplified.
Notice that the vertices of such 3-polytopes M can have at most three different
valencies because of the connectedness of the graph of M. Let us therefore
denote by #(a, b, c) the family of all quadrangular 3-polytopes whose all edges
are either of the type ((a, b)(4, 4)) or of the type ((b, c)(4, 4)).

In [3] the first step in the study of the combinatorial structure of such
polytopes has been made. The following result to be used in the sequel has been
proved in [3]: The families #(3, 3, 4), (3.3, 5), (3,3, ¢) for ¢ = 11 and
F(4,3,5) are finite. The families #(3,3,¢) for 6 < ¢ <10, ¥(3,4,¢) and
F(3,5,¢) for c =4, ¥(4,3,¢) and F(5, 3, ¢) for ¢ = 6 are infinite. Every
quadrangular 3-polytope with exactly two types of edges belongs to precisely one
of the families mentioned.

In the present paper we continue our investigations of the combinatorial
structure of quadrangular 3-polytopes with two types of edges and make an
attempt to characterize vertex-vectors of such polytopes. (If v,(M) denotes the
number of i-valent vertices of M, (v,(M)) is the vertex-vector of M. In the sequel
the superfluous zeros will be left out.) The following sections contain conditions
for a triple (v,.v,,v) or couple (r, v) of positive integers to be the
vertex-vector of a 3-polytope belonging to ¥(a, b, ¢) or #(a, a, c), respec-
tively. (Notice that #(a, b, ¢) = ¥(c, b, a).)

Unfortunately, we are unable to present, for certain triples (a, b, ¢),
a complete characterization of vertex-vectors of polytopes belonging to
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Fla, b, ¢). Therefore we state explicitly all undecided cases. Certain procedures
for the construction of planar 3-connected graphs (ic. of 3-polytopes—see
Steinitz’s theorem in Griinbaum [2]) are employed. Some general prerequisites
must be stated first. To shorten the exposition one more symbol is intro-
duced: Let G,la, ¢) denote the family of all planar maps with a b-regular
2-vertex-connected 3-edge-connected graph whose all faces are either a-gons or
C-gOns.

Almost all constructions in the sequel use the notion of the radial map
r(M) of a given planar map M (see e.g. Jucovi¢ [4], Ore [6]). Given a planar
map M we associate with M (with the vertex-set V' (M), edge-set E(M) and
face-set F(M)) a map r(M) so that V(r(M))=V(M)uF(M), and
e=XYeE(r(M))==XeV(M), YeF(M) and X is a vertex of the face Y, or
XeF(M), YeV(M)and Y is a vertex of the face X. As every edge ge E(M) is
incident with two vertices and with two faces of M, g determines a quadran-
gular face of r(M). So for every map M, r(M) is a quadrangular map whose
vertex set V' (r(M)) is partitioned into two disjoint sets. The valencies of vertices
in one set are those of the vertices of V (M), the valencies of the second one are
equal to the numbers of edges of the faces from F(M). It is not difficult to prove
that if the graph of M is 2-vertex-connected and 3-edge-connected, the graph of
r(M) is 3-vertex-connected and therefore realizable as the graph of a 3-polytope
(by Steinitz's theorem, see [2]).

We shall use the following lemma which is not hard to deduce from basic
relations between M and r(M).

Lemma 1.1, (a) If MeG,la, c) then r(M)e ¥ (a, b, ¢).
(b) If PeF(a, b, c), a#b #c+#a, then there exists a map Me G,la, ¢)
such that r(M)=P.

The next lemma (due to Gallai [17) is employed mainly for proving the
nonexistence of a planar map whose radial map belongs to an “(a. b, ¢).

LEmMMma 1.2, If all faces of a planar map M are p-gons and all vertices of
M have valencies = 0 (modq) then the number of faces of M is an integer multiple
of the number of faces of P(p, q). the regular spherical mosaic with all vertices
g-valent and all faces p-gons.

The following lemma is straightforward:

Lemma 1.3. Writing v (M) = v, if a # b # ¢ # a then for every 3-polytope
Me % (a, b, ¢)

(1) av, +cv, = bu,.

Manipulations with (1) and with Euler's formula yield necessary con-
ditions contained in
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LEMMA 1.4. The vertex-vector (v, v,, v) of a polytope Me Y (a, b, ¢),
a # b # ¢ # a, satisfies the conditions

_ 4b—(2b+2c—be)v,

&) R T T T
_4a+2(c—a)y,
3) s 2a+2b—ab

The vertex-vector (vy,v) of Me¥(3,3,¢) or Me¥(3, ¢, ¢) satisfies the
condition

(4) vy =8+(c—4)r,.

From Lemma 1.4 it follows that if we look for vertex-vectors (v,, v,, v) or
(v,, v.) of all polytopes belonging to #(a, b, c) or to #(a, a, ¢), respectively, we
can only examine, for every positive integer m, whether there exists an
Me#(a, b, ¢) or Z(a, a, ¢) such that v (M) = m. (If so, such an m is called
a suitable value of v,.) In the next sections, for every triple (a, b, ) we state the
known suitable and unsuitable values of v,. The reader should try to answer the
undecided cases. In the sequel, every triple of integers (v,, v;, v,) which is
a candidate for the vertex-vector of an M e #(a, b, ¢) is supposed to satisfy (3)
and (2) (and analogously. (4) holds for the pair (vy, v))

2. The families (4, 3, ¢)

Table 1 presents our knowledge of vertex-vectors of quadrangular 3-polytopes
belonging to ¥(4, 3, ¢) (all letters denote nonnegative integers). Because of
Lemma 1.4, Table | deals with the coordinate v, of these vectors only. (The
same applies to other families #(a. b, ¢) in Tables 2-4))

Table 1

The vertex-vectors (rs, vy, v,) of polytopes from #'(4, 3, ¢)

c Suitable v, Unsuitable o, Undecided 1,
| 5 2,4,6,8 all #2,4,6,8 -
2 6 all =2 1 -
3 Bk+i, k=z1,i=0,1,35 alleven =2 all odd -
4 Bk+7, k=0 all even =2 all odd -
; all cven =22 odd v,
¥ BeEREed all odd > 4k+3 ! | < b, < 4k+3
all even =2 odd .
8 Bt ol all odd > 2k+$ ’ I <o, <2+3

all even =2 odd o,

i all odd > 4k+5 <o, <ak+3
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Proof of the statements in Table 1.

2.1. First let us deal with the unsuitable vaiues of v, (column 3).

Certainly v, # | because there exists no trivalent planar map M with
s{AM) =1 and s5.(M) =0 for i # 4. ¢. as can be seen by direct construction.
(5;(M) is the number of i-gons of the map M.

Lines 3 and 4: For the trivalent map M such that r(M) = Pe #(4, 3, ¢),
from Euler’s formula it follows that 25,(M) = 124 (¢ —6)s(M); if ¢ is odd, the
right-hand side of this equality is even only if s.(M) = v (P) is even.

If ¢ = 0 (mod 8), the evenness of v, follows from Lemma 1.2 applied to the
dual of the trivalent map from G,(4, ¢) whose radial map belongs to #'(4, 3, ¢).

2.2. All statements in lines | and 2 follow from the validity of the
appropriate statements on those maps from G,(4, ¢) (for maps with 3-connec-
ted graphs see Grinbaum [2], Jucovi¢ [4]) whose radial maps belong to
S4, 3, o).

2.3. We now turn to the statements in the first column (and lines # 1, 2).
In all cases, first a map MeG,(4, ¢) having v, c-gons (and quadrangles) is
constructed; r(M) is then the desired polytope Pe.%(4, 3, ¢).

Procedure 1 increases the number of c-gons in a given map M € G,(4, ¢) by
two. Suppose we have a triple of quadrangles in M as in Fig. 2.1 (a). Insert
into the “middle” one ¢—4 new edges as in Fig. 2.1 (b). Two new c¢-gons appear,
This creation of c-gons in pairs can be repeated any number of times.

c-gon; 2

=)

Fig. 2.1(a) Fig. 2.1{b)

c-gon

Now, if v, is even we begin with the c-prism and apply Procedure |
(v,—2)/2 times.

To obtain odd numbers of c-gons the starting maps have to be changed.

For ¢ = 2 (mod 8) and ¢ = 6 (mod 8) the starting map (Fig. 2.2) contains
¢/2+ 2 faces which are c-gons. Further, Procedure 1 is employed.

For ¢ = 8k + 4 we start with the 6-prism; denote its side-faces by a,, ..., %,
and the bases by f,, f#,. Decompose each of the faces a,, a5, #; into 4k + 1
quadrangles: o 1, ..., 05 4k4 15 X310 cees Xaak41s X5 4s ., Us.ax+y —the faces
&y, %y, % become (8k +4)-gonal. The faces §,, f#, are changed into (8k + 4)-gons
as follows: The quadrangles , ;. i = 1 (mod4), i < 4k + 1, are divided by 8k —2
new edges into 8k — 1 quadrangles; each of the quadrangles o, ;, i = 3 (mod 4),
is divided by two new edges into three quadrangles. All new edges inserted are
to be parallel with those edges of «, ;, i = | (mod 2), which are common to
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these quadrangles and the face x,. The above procedure yields 2k +5 faces
which are all (8k +4)-gons. Procedure | is used to increase the number of

c-gons in pairs.

3. The families .7(5, 3, ¢)

The vertex-vectors (v, v4, t.) of polytopes from (5.3, ¢)

¢ Suitable o, Unsuitable v,  Undecided v,

I 10k, k=1 all even all odd -
2 10k+41, k=1,23 all even 1 all odd > 1

all #1,3,5,7.9,11, 3.5, 7. 9.1, 13;
3 M0klokat 13, 15, 17, 19 1 15,17, 19
4 10k+j,j=2,3 k=12 all even 1 all odd > |
5 10k+j,j=2,3, k=3 oY :;3135‘ Tidy 1 3,579, 11, 13
6 10k+i, i=4,5 k=1 all =2 | —
7 10k+6, k=20 all 22 I -
8 7 all even =2 I all odd > 1
9 10k+T7,. k=1 all #1,3,5,7 1 3,5.7
10 8 all =2 | -
11 10k+8, k=1 all #£1,3,5.7 1 3.5
12 10k+9, k=0,1,2,3,4 all even =2 1 all odd > 1

all #1,3,5,7.9, 11, 3:5:7:.9;-11:13;
1 9k 13, 15, 17 ' 15,17, 19

Proof of the statements in Table 2.

3.1. The nonexistence of M€ %(5, 3, ¢) with v(M) =1 is demonstrated
exactly as the analogous statement for polytopes from #(4, 3, ¢).
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If ¢ =0 (mod10), the evenness of v, follows from Lemma 1.2.

3.2. Instead of polytopes from the family (5, 3, ¢) we will again first
construct suitable maps M from G,(5, ¢), ¢ = 6. As noted in Lemma 1.1,
riM) = Pe.Z(5, 3. ¢) for every M € G,(5, ¢). It is easy to see that v (P) = 5.(M).

Fig. 3.1(a) Fig. 3.1(b)

Procedure 2 increases the number of ¢-gons in a given map M € G,4(3, ¢) by
two. Suppose we have in M a quadruple of pentagons as in Fig. 3.1 (a). Add to
it 2¢— 10 new edges as in Fig. 3.1(b). Two new c-gons appear. Quadruples of
pentagons to be used for repeating the construction appear as well.

If v, is even, the starting map for every ¢ is the map of the regular
dodecahedron. Procedure 2 1s performed v,/2 times. For odd v, the situation is
a little more complicated.

33. For v, =1 (mod2) we again construct only starting maps from
G4(5, ¢) with an odd number of c-gons. Each of these maps will contain

y’ x3 Y X,
Xl 72 xl Y?
"y X2 "1 X2
Vs bt
X, %5
" 2

Fig. 3.2
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a quadruple of pentagons as in Fig. 3.1(a), to be able to perform Procedure 2.
A construction similar to that of Owens [6] will be used. A basic role is played
by the configurations V,, V,, D, and D,,. The first three of them are shown in
Fig. 3.2. The configuration D,, m = 2, is obtained from D, , and D, by
identifying the edge X, Y, of D,,_, with the edge X, ¥, of D, and then deleting
these labels. All vertices of these configurations are 3-valent, apart from pairs of
adjacent 2-valent vertices X, Y, i = 1, 2, 3. The edges X, Y, which join them will
be called half edges. All interior faces of these configurations are pentagons.

To construct the required maps from the family G4(5, ¢), we take copies of
V,. and D, (with suitable values of m and n) and connect them by identifying
half edges. To specify the pattern of joins and the values of m and n, we use
a 2-connected 3-valent planar multigraph with suitable labels. A vertex with
label m denotes V,,, an edge with label n denotes D, and incidence between the
vertex and the edge indicates that V, and D, have a half edge identified. An
unlabeled edge (or an edge with label 0) joining vertices with labels m and m'
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Fig. 3.5

indicates that the corresponding copies of V, and V,. have a half edge
identified. The success of the construction depends on the possibility of
choosing the parameters m and m’ so that all faces of the final map, other than
interior faces of copies of V,, or D,, are ¢-gons. In any case the final graph is
3-connected.

For ¢ = 10k+i, k=1, i=4,5,6, a suitable multigraph is in Fig. 3.3
where r=s=2fori=4,r=2 s=3fori=5andr=s=3fori=6.1Itis
clear that the corresponding map M is from S4(5, ¢) with s (M) = 3.
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For ¢ = 10k+i, k=1, i =7, 8, a suitable map is in Fig. 3.4 where r =2
for i=7, and r=3 for i =8 The corresponding map MeG,(5, ¢) has
5.(M)=9.

For ¢ = 10k+1i, k=3, i = 2.3, we obtain the starting map M from
G,(5, ¢) from the graph in Fig. 3.5 where r=2, s=3 fori= 2, and r =3,
s =2 for i = 3. In both cases s(M) = 15.

Forec=10k+1, k= 4, and ¢ = 10k+9, k = 5, the starting map M from
G4(5,¢) is in Fig. 3.6. For ¢ = 10k+1 any unlabeled vertex has label 2,
m=k—4 and n =2k~ 1. For ¢ = 10k+9, any unlabeled vertex has label 3,
m=k—5 and n = 2k. In both cases we have s.(M)=2I.

For ¢ = 6 it follows from Jucovic [4] that there is a map M € G,(5, 6) with
SefM)=d for any d > 0, d # 1.

Fig. 3.7

For ¢ = 8 we start with the dodecahedron. Three of its pentagons with
common vertex are changed as shown in Fig. 3.7. We obtain MeG,(5, 8)
with s;(M) = 3. The map M contains a quadruple of pentagons as in Fig. 3.1 (a)
which can be used for performing Procedure 2.

4. The families (3, 4, ¢) and #(3, 5, ¢)

It is perhaps caused by the close connection of our procedures of
construction of polytopes from %(3, 4, ¢) and from #(3, 5, ¢) that the results
are so similar for these families,

Proof of the statements in Table 3.

4.1. Let us get rid of the unsuitable values v.. The necessity of v, # |
follows from the nonexistence of either a 4-valent or a S-valent planar map
containing triangles and one c-gon only.
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Table 3

The vertex-vectors (vg, vy, v,) of polytopes from #(3, 4, ¢) and the vertex-vectors (va, vs. 1) of
polytopes from %3, 5, ¢)

¢ Suitable o, Unsuitable v,  Undecided ¢,

1 6k, k=1 all even =2 all odd -

2,4,6,8,10,12
7 4, 6,8, 10,12,

2 all =14 | 3,5,.7,9, 11,13

3 6k41. k=2 2,4,6 all =8 i 3,5.7

4 6k+i, k=1.i=23 all =2 1 -

5 6k+4, k=0 all =2 1 -

6 5 2,4.6,8, 10,12, 1 3.5,7.9, 11, 13,
14, 16, 18, all =20 15,17, 19

7 6k4S5. k= 2.4,6. all =28 1 3757

——

Fig. 4.1

The evenness of v, in case ¢ = 0 (mod 6) is established using Lemmas 1.1 (b)
and 1.2.

4.2. In constructions of polytopes proving the statements of Table 3 the
following procedures for construction of 4-valent and 5-valent planar maps will
be useful.

Procedure 3 is the well-known procedure replacing edges by quadrangles. It
is shown in Fig. 4.1 where dashed lines denote the original graph M.

The obtained map M’ has the following properties: To every m-gon and
every m-valent vertex in M there is associated an m-gon in M". If two edges of
M are adjacent, the corresponding quadrangles in M’ will have a common
vertex. If two faces (vertices) of M are adjacent, the corresponding faces in M’
will be separated by a quadrangle. To the incident pair: an m-gon and an
n-valent vertex of M, there will be associated an m-gon and an n-gon of M’ with
a common vertex. Every vertex of M’ is 4-valent. For our purposes it is
important that s,(M’) = s,(M)+v,(M) for all i # 4. If in M there are triangles
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and c-gons and trivalent and c-valent vertices only then every edge of M’ is
common to a quadrangle and a k-gon, k=3, c. If the graph of M is
2-connected, the graph of M’ is 3-connected (therefore polytopal). So if M has
vertices and faces of types just described, the dual of M* belongs to (3, 4, ¢).

Procedure 4 consists of two steps.

First by Procedure 3 the map M’ with a regular 4-valent graph is
constructed.

Second step: Every quadrangle of M’ corresponding to an edge of M is
divided by its diagonal into two triangles in such a way that we obtain
a S-valent map M* for which s(M*) = s(M)+v,(M) for all i s 3. (This is
always possible because of the orientability of the sphere.)

If the given planar map M’ has a 2-connected graph and contains triangles
and c-gons and trivalent and c-valent vertices only, then the map M* has
a regular S-valent graph such that s,(M*) = s,(M)+v,(M) for i =3, ¢ and its
graph is 3-connected.

It is clear that r(M*), the radial map of M*, is from the family #(3, 5, ¢).

4.3. To prove the statements in the second column of Table 3 it is
sufficient to construct suitable maps M mentioned above in Procedures 3 and 4.
Let r, =0 (mod2). We start with the map of the tetrahedron. A con-

AN

v A 8
Fig. 4.2

figuration consisting of the triangle ABC and the vertex V as in Fig. 4.2 is used.
The edge AC of the triangle ABC is divided by the vertices A,, ..., A._, into
¢—2 parts and new edges VA, i=1,..., c—3, are inserted. A pair: a ¢-valent
vertex and a c-gon, appears. The valencies of the other vertices and faces are
not changed. The obtained map again contains a pair: a triangle and a 3-valent
vertex, needed for increasing the number of elements of degree ¢ of M.

Fig. 43
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For v, = 1 (mod 2) the construction of the suitable map M depends on ¢ by
mod 6. A basic role in constructions will be played by the configuration R,
k = 1. The configuration R, is shown in Fig. 4.3. The configuration R, k = 2,
is obtained from Re-1 and R, by identifying the edge X, Y, of Ri-1 with the
edge X, Y, of R, and then deleting these labels. R, denotes an edge X, Y, only.
Our constructions begin with 2-connected planar maps with labeled edges. An
edge with label k denotes R,. An unlabeled edge (or an edge with label 0)
denotes R,.

For ¢ =6k+i, i=2,3,4, ¢ 24, k=0, the construction starts with the
map in Fig. 4.4(i). The obtained map M, has three c-gons. All other faces and
all vertices have degree three. The further needed v, —3 elements of valency

k

(2)

(3)

(4)
Fig 44

Fig 4.5
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Fig. 4.6

¢ will be obtained by using pairs: a 3-valent vertex and a triangle, as described
above.

For ¢ = 6k+5, k= 1, the starting map M is shown in Fig. 4.5 and for
¢ = 6k+1, k = 2, the construction begins with the map in Fig. 4.6. In both

Fig. 4.7
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cases the starting maps have nine c-gonal faces. The additional v,—9 elements
needed will be obtained as above using pairs: a triangle and a 3-valent vertex.
For ¢ =7 the starting map with fifteen 7-gons is shown in Fig. 5.5
(consider a trivalent vertex instead of a dark marked triangle).
For ¢ =5 the starting map with 21 elements of valency five is shown in
Fig. 4.7.

5. The families (3. 3, ¢)

Table 4

The vertex-vectors (v, v.) of polytopes from (3, 3, ¢)

¢ Suitable v, Unsuitable v, Undecided v,

! 4 2,3 all #2,3 27
2 S 2,6 all #2,6 -
3 6 all even =2 all odd -
4 2 2, all =0 (mod3)and =26 3.9, all #0 (mod3) 5

and #9, 21 and # 2 -
B 8 2, 4ll =0 (mod3) and =6 23,9, all 20 (mod3) .

and #3,9 and # 2

) ) 1,3,4,5,6,7,8,9,

6 9 2, all even and =12 10. 11, 13 all odd = 15

2, a4ll =0 (mod3)and =12 3,6,9, 15, 5
T 10 nd #15.18,21,30,33, 45 all 20 (mod3)and 2 !8+21:30,33.45
8 =11 2 all #2 -

Proof of the statements in Table 4.

S.1. Crucial in the proofs of unsuitability of certain values are the
following lemmas.

Lemma 5.1. If Me#(3, 3, c), then M is the radial map of the c-gonal
pyramid or of a planar map belonging to G,(3, c).

Proof. No polytope M e .#(3, 3, ¢) contains a quadrangle having only
3-valent vertices; otherwise M contains as a subgraph the graph of the cube
which has in M at most two c-valent vertices and so the graph of M is not
3-connected, a contradiction to Steinitz's theorem concerning polyhedral
graphs.

By a 3-path (U, V) we mean a path joining two c-valent vertices U,
V whose every internal vertex is 3-valent. If P is the shortest 3-path (U, V) in
M, then its length is at most 3. Indeed, if this is not true and the shortest 3-path
(U, VYis U=V, V,,.... ¥, = V. n =4, then the quadrangle V,V,V;W has
every vertex of degree 3 in contradiction to our observation at the beginning of
the proof.
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All vertices of M can be regularly colored by two colors. If in M there
exist two ¢-valent vertices of different colors, then they are joined by a 3-path of
of length 3. From the unambiguity of the construction it follows that M has
exactly two c-valent vertices. In this case M is the radial map of the c-pyramid.
If the length of the shortest 3-path is 2, then all c-valent vertices have the same
color in accordance with our statement.

M is the radial map of the map with the graph G formed in the following
way: The vertices of G are all vertices of M colored by colors different from
those of c-valent vertices, and an edge joins two vertices if they are vertices
of the same quadrangle of M. The graph G is 3-edge-connected and
2-vertex-connected because in the opposite case its radial map is not polytopal.

LEMMA 5.2. For every M e (3, 3, ¢) with v, # 2 there exists a planar map
with a 3-regular graph having exactly v, faces which are incident with at least
h edges, h = ¢/2, each.

We obtain the required map by replacing every triangle of the 3-valent
planar map whose radial map is M by a 3-valent vertex.

From Euler’s formula the following lemma follows easily:

LemMa 5.3. For the face-vector (s, s4, ...) of a planar map with a 3-reqular
graph we have:

(A) If 53 #0 and s, =0 for all k =4, k # ¢, then 3sy = 12+(c—6)s..
(B) If 83 = O. then 24345.- = 6.

(C) lf Sy =84 = 0, then Z;;sS, =12,

(D) At least one face of M has less than 6 edges.

5.2. All statements in lines 1, 2 and 3 of Table 4 follow from basic
properties of planar 3-valent maps (see Griinbaum [2], Jucovi¢ [4] and Lemma
5.3).

The unsuitability of integers #0 (mod3) and # 2 in lines 4, 5, 7
is a simple corollary of Lemmas 5.1, 5.2 and 5.3(A).

The unsuitability of v, =3 and vy =3 or vy <11 except vy =2 and
o = 3, 6,9 is a corollary of Lemmas 5.1, 5.2 and 5.3(B) or 5.3(C), respec-
tively.

The unsuitability of integers in line 8 follows from Lemmas 5.1, 5.2 and
5.3(D).

The unsuitability of v, = 9 or vy = 9 follows from a detailed investigation
of 3-valent planar maps having exactly nine 7-gons or 8-gons and triangles
whose radial maps could belong to #(3, 3, ¢), which we omit here. In fact, 1t
can be shown that they do not exist.

The proof of the unsuitability of v,, = 15 is similar.

The unsuitability of vy = 13 follows from the nonexistence of a map
M e G,(5. 6) with s,(M) =1 (cf. [4, p. 61]).
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5.3. Let us prove column 2 in Table 4, the suitability of certain values.

The radial polytope of the c-pyramid, ¢ = 4, belongs to #(3, 3, ¢) and has
the vertex-vector (v; = 2¢, v, = 2). The suitability of any other value of v, will
be proved (using Lemma 5.1) by constructing a map MeG;(3, ¢) with
5.(M) = v_. The following Procedures 5 and 6 applied to certain starting maps
are employed.

Procedure 5 consists in replacing a pair of triangles joined by an edge
(configuration C) as in Fig. 5.1 by the cell-aggregate O, in Fig. 5.2 (Procedure
5a) or by the cell-aggregate O, in Fig. 5.3 (Procedure 5b). In both cases the
map obtained contains configurations C for repeating the procedures.

Fig. 5.1 Fig. 5.2

Fig 5.3

The cell-aggregate O, contains six 8-gons; if the dark marked triangles are
changed into trivalent vertices, then O, contains six 7-gons. Therefore
performing once Procedure 5a causes increasing the number of §-gons or
7-gons by six.

The cell-aggregate O, contains twelve 10-gons; if the dark marked
triangles are changed into trivalent vertices, O, contains twelve 9-gons. So
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Fig, 54 Fig. 5.5

performing once Procedure Sb causes increasing the number of 10-gons or
9-gons by twelve.

Now, performing Procedure 5a with the 8-gons or 7-gons on the map in
Figs. 5.4, 5.5 or 5.6(a) (where the dark area is the map in Fig. 5.6 (b)) proves the
statements in lines 4 and 5 (for ¢ = 7 the dark triangles in Figs. 5.4 and 5.5 are
replaced by trivalent vertices).

Performing Procedure Sb with 9-gons on the six maps in Fig. 5.7 proves
the statement in line 6 for v # 2.

Performing Procedure 5b with 10-gons on the map of the dodecahedron
whose every vertex is replaced by a triangle proves the statement in line 7 for
0,0 = 0 (mod 12). To settle the remaining statements in line 7 a new procedure
is introduced.

Procedure 6 allows us to increase the number of 10-gons by 15 as follows:
Having in the given map a submap as in Fig. 5.8 (configuration K) it is replaced
by the cell-aggregate in Fig. 5.9; in it configuration K is contained making it
possible to repeat the procedure.

Except for the number 2 every number in line 7 and column 2 can be
expressed in the form 12m+ 155 (m = 1, s = 0 are integers). (The undecided

Fig. 5.6(a) Fig. 5.6(b)
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values in that line cannot be expressed in that form.) Having the map with 12m
10-gons (constructed with the use of Procedure 5 which ensures the existence of
a configuration K in it) we perform on it Procedure 6 s times.

The radial maps of the constructed maps belonging to G4(3, ¢) are the
required maps, proving statements in column 2 of Table 4.
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Fig. 5.8 Fig. 5.9

References

(11 T. Gallai, Signierte Zellenzerlegungen I, Acta Math. Acad. Sci. Hungar. 22 (1971), 51-63.

[2] B. Grinbaum, Convex Polytopes, Interscience, New York 1967,

[3] S. Jendrol' and E. Jucovi&, Quadrangular 3-polytopes with at most two types of edges,
Discrete Math., to appear.

[4] E. Jucovic, Convex 3-polytopes, Veda, Bratislava 1981 (in Slovak).

[5] O. Ore, The Four-Color Problem, Pure and Appl, Math, 27, Academic Press, New York 1967,

[6] P.J. Owens, Simple 3-polytopal graphs with edges of only two types and shortness coefficients,
Discrete Math. 59 (1986), 107-114.

Presented to the Semester
Combinatorics and Graph Theory
September 14 — December 17, 1987



